fastvpinns.model.model module
The file model.py hosts the Neural Network (NN) model and the training loop for variational Physics-Informed Neural Networks (PINNs). The focus is on the model architecture and the training loop, and not on the loss functions.
Author: Thivin Anandh D
Changelog: 22/Sep/2023 - Initial implementation with basic model architecture and training loop
Known issues: None
Dependencies: None specified
- class fastvpinns.model.model.DenseModel(*args, **kwargs)[source]
Bases:
Model
Defines the Dense Model for the Neural Network for solving Variational PINNs.
- Parameters:
layer_dims (list) – List of dimensions of the dense layers.
learning_rate_dict (dict) – The dictionary containing the learning rate parameters.
params_dict (dict) – The dictionary containing the parameters.
loss_function (function) – The loss function for the PDE.
input_tensors_list (list) – The list containing the input tensors.
orig_factor_matrices (list) – The list containing the original factor matrices.
force_function_list (tf.Tensor) – The force function matrix.
tensor_dtype (tf.DType) – The tensorflow dtype to be used for all the tensors.
use_attention (bool, optional) – Flag to use attention layer after input, defaults to False.
activation (str, optional) – The activation function to be used for the dense layers, defaults to “tanh”.
hessian (bool, optional) – Flag to use hessian loss, defaults to False.
- call(inputs)[source]
The call method for the model.
- Parameters:
inputs (tf.Tensor) – The input tensor for the model.
- Returns:
The output tensor of the model.
- Return type:
tf.Tensor
- get_config()[source]
Get the configuration of the model.
- Returns:
The configuration of the model.
- Return type:
dict
- train_step(beta=10, bilinear_params_dict=None)[source]
The train step method for the model.
- Parameters:
beta (int, optional) – The beta parameter for the training step, defaults to 10.
bilinear_params_dict (dict, optional) – The dictionary containing the bilinear parameters, defaults to None.
- Returns:
The output of the training step.
- Return type:
varies based on implementation